Preliminary communication

A NEW ROUTE TO *mer*-TRICARBONYLS OF MANGANESE(I) CONTAINING N-DONOR CHELATE LIGANDS

F.J. GARCIA ALONSO, V. RIERA,

Departamento de Química Organometálica, Universidad de Oviedo, 33071, Oviedo (Spain)

and M. VIVANCO

Departamento de Química Inorgánica, Universidad de Valladolid, 47005, Valladolid (Spain) (Received November 17th, 1986)

Summary

It has been shown that new *mer*-tricarbonyls *mer*-[Mn(CO)₃L(tmed)]ClO₄, (tmed = N, N, N', N'-tetramethylethylenediamine, L = P(OMe)₃, P(OEt)₃, P(O-i-Pr)₃) can be readily obtained from the reaction between *fac*-Mn(CO)₃(tmed)Br, AgClO₄, and L at room temperature, whereas at 0°C *fac*-isomers are produced. The opposite is the case for L = CN-t-Bu; *mer*-[Mn(CO)₃(CN-t-Bu)(tmed)]ClO₄ is observed at 0°C, and the *fac*-isomer is stable at 25°C.

Recently [1] we isolated the first two *mer*-tricarbonyls of manganese(I) containing N-donor chelate ligands, *mer*-[Mn(CO)₃(CN-t-Bu)(N-chelate)]ClO₄, (N-chelate: 2,2'-bipyridine, bipy, 1,10-phenanthroline, phen) by decarbonylating the *fac*-isomer with ONMe₃ and then bubbling CO through the solution. This method is apparently only useful when the third ligand is CNR. Up to now no other *mer*-tricarbonyl of manganese(I) with N-chelate ligands have been reported, and, indeed, *mer*-tricarbonyls of d^6 metals such as chromium(0) and molybdenum(0) containing N-chelate ligands are very scarce, and kinetic reasons have been advanced to account for their inaccessibility [2]. In continuation of our work in this field we have found that by use of tmed (which is more bulky than bipy and phen) as the N-chelate it is possible not only to generate *mer*-tricarbonyls with CNR by the ONMe₃ route but also *mer*-[Mn(CO)₃L(tmed)](ClO₄) (L = phosphites) in a straightforward way.

 $Mn(CO)_5Br$ reacts with tmed in refluxing hexane to give fac-Mn(CO)₃(tmed)Br (1 in Scheme 1) as a yellow precipitate [3].

Halide abstraction from 1 with $AgClO_4$, followed by addition of the ligand L gives the yellow *mer*-[Mn(CO)₃L(tmed)]ClO₄, (L = P(OMe)₃, 3a; P(OEt)₃, 3b; P(O-i-Pr)₃, 3c) in good yield (60%) [4]. The isolation of the *mer*-tricarbonyls was

SCHEME 1. N-N: tmed. (i) $AgClO_4$ and L at 0°C; (ii) stirring at room temperature (r.t.); (iii) $AgClO_4$ and L at r.t.; (iv) $AgClO_4$ and CN-t-Bu; (v) ONMe₃; (vi) CO.

somewhat surprising, since the expected products were the *fac*-isomers, in view of the *cis*-labilizing effect of the N atoms of the tmed. Indeed, when the reaction was repeated at 0°C, *fac*-[Mn(CO)₃L(tmed)]ClO₄, (L = P(OMe)₃, 2a, P(OEt)₃, 2b; P(O-i-Pr)₃), 2c) were formed (yield 66%) [5]. They isomerize to the *mer*-complexes 3 in CH₂Cl₂ solution at room temperature.

Complex 1 gives fac-[Mn(CO)₃(CN-t-Bu)(tmed)]ClO₄ (4) by replacement of Br by ClO₄ followed by addition of CN-t-Bu [6]. When 4 is stirred with ONMe₃, a *cis*-dicarbonyl is formed, (ν (CO) (cm⁻¹): 1937s, 1863s; ν (CN) (cm⁻¹): 2124 m), probably *cis*-[Mn(CO)₂(CN-t-Bu)(tmed)L']ClO₄ (5) (L' = NMe₃, sometimes NMe₃ can be replaced by ONMe₃) [7,8]. Complex 5 could not be isolated, since it decomposed during the work up. Bubbling of CO through a CH₂Cl₂ solution of 5 at room temperature gave the *fac*-tricarbonyl 4, but at 0°C *mer*-[Mn(CO)₃(CN-t-Bu)(tmed)]ClO₄ (6) was obtained [9], contaminated with small amounts of the *fac*-tricarbonyl 4. Purification of 6 was not possible because of its rapid isomerization to the *fac*-tricarbonyl 4. Similar isomerization, at higher temperatures, was observed for *mer*-[Mn(CO)₃(CN-t-Bu)(bipy)]ClO₄ and *mer*-[Mn(CO)₃(CN-t-Bu)(phen)]ClO₄ [1].

The greater thermal stability of 4 than of 6, and the fact that 1 does not change its geometry in refluxing hexane, suggest that the dominant influence on the isomerization of fac-[Mn(CO)₃L(tmed)]ClO₄ (2) (L = phosphites) to the corresponding *mer*-complexes 3 is not electronic but steric.

The complexes have been fully characterized by elemental analysis (C,H,N) and by IR and ¹H NMR spectroscopy. The ¹H NMR spectra of pure samples of

fac-tricarbonyls 2, recorded at room temperature, always reveal the presence of small quantities of the *mer*-isomers 3.

The possibility of obtaining new *mer*-tricarbonyls containing other bulky N-chelates and extending the studies to other metals is now being explored.

Acknowledgements. We thank the Spanish C.A.I.C.Y.T. for financial support.

References and notes

- 1 F.J. García Alonso, V. Riera, F. Villafañe and M. Vivanco, J. Organomet. Chem., 276 (1984) 39.
- 2 G.R. Dobson, K.I. Asali and N.S. Binzet, 183rd Am. Chem. Soc. Meeting, March/April, 1982, ref. 57.
- 3 For 1. IR (CH₂Cl₂, cm⁻¹), v(CO): 2039s, 1935s, 1898s. Yield 95%.
- 4 For **3a**. IR (CH_2CI_2, cm^{-1}) , $\nu(CO)$: 2071w, 1965s, 1941m. ¹H NMR (CDCI₃, δ in ppm, J in Hz). δ (tmed): 2.88,s (16H). δ (P(OCH₃)₃): 3.84,d; J(PH): 10.4 (9H). For **3b**. IR (CH₂CI₂, cm⁻¹), ν (CO): 2068w, 1962s, 1937m. ¹H NMR (CDCI₃, δ in ppm, J in Hz). δ (tmed): 2.88, s; (16H). δ P(OCH₂CH₃)₃: 1.38, t; J(HH) 6.3 (9H). δ (P(OCH₂CH₃)₃): 4.10, q, d; J(HH) = J(PH) = 6.3 (6H). For **3c**. IR (CH₂CI₂, cm⁻¹), ν (CO): 2068w, 1961s, 1933m. ¹H NMR (CDCI₃, δ in ppm, J in Hz). δ (tmed): 2.80,s (16H). δ (P(OCH(CH₃)₂)₃): 1.30, d; J(HH) 6.0 (18H). δ (P(OCH(CH₃)₂)₃): 4.96, m (3H).
- 5 For 2a. IR (CH₂Cl₂, cm⁻¹), ν (CO): 2050s, 1955s, 1935s. ¹H NMR (CDCl₃, δ in ppm, J in Hz). δ (tmed): 2.90, s (10H), and 2.99, s (6H). δ (P(OCH₃)₃): 4.00, d; J(PH) 11.0 (9H).

For 2b. IR (CH_2Cl_2, cm^{-1}) , $\nu(CO)$: 2048s, 1952s, 1936s. ¹H NMR $(CDCl_3, \delta$ in ppm, J in Hz). δ (tmed): 2.90, s (10H) and 2.99, s (6H). δ (P(OCH₂CH₃)₃): 1.43, t; J(HH) 7.0; (9H). δ (P(OCH₂CH₃)₃): 4.30, q, d; J(HH) = J(PH) = 7.0; (6H).

For 2c. IR (CH_2Cl_2, cm^{-1}) . $\nu(CO)$: 2045s, 1952s, 1938s. ¹H NMR CDCl₃, δ in ppm, J in Hz). δ (tmed): 2.91, s (10H) and 2.99, s (6H). δ (P(OCH(CH_3)_2)_3): 1.50, d; J(HH) 6.3; (18H). δ (P(OCH(CH_3)_2)_3): 4.85, m (3H).

- 6 For 4. IR (CH₂Cl₂, cm⁻¹). ν(CN): 2188m. ν(CO): 2050s, 1960s, 1948s. ¹H NMR (CDCl₃, δ in ppm) δ(tmed): 2.88, s (8H) and 2.96, s (8H). δ (CNC(CH₃)₃): 1.69, s (9H).
- 7 D.J. Blummer, K.W. Barnett and T.L. Brown, J. Organomet. Chem., 173 (1979) 71.
- 8 P.O. Nubel, S.R. Wilson and T.L. Brown, Organometallics, 2 (1983) 515.
- 9 For 6. IR (CH₂Cl₂, cm⁻¹). ν (CN): 2168m. ν (CO): 2070w, 1975s, 1950m.